LIRADeconvolver#
- class pylira.LIRADeconvolver(alpha_init, n_iter_max=3000, n_burn_in=1000, fit_background_scale=False, save_thin=True, ms_ttlcnt_pr=1, ms_ttlcnt_exp=0.05, ms_al_kap1=0.0, ms_al_kap2=1000.0, ms_al_kap3=3.0, filename_out=None, filename_out_par=None, random_state=None)[source]#
Bases:
object
LIRA image deconvolution method
- Parameters:
- alpha_init
ndarray
Initial alpha parameters. The length must be n for an input image of size 2^n x 2^n
- n_iter_maxint
Max. number of iterations.
- n_burn_inint
Number of burn-in iterations.
- fit_background_scalebool
Fit background scale.
- save_thinTrue
Save thin?
- ms_ttlcnt_pr: float
Multiscale prior TODO: improve description
- ms_ttlcnt_exp: float
Multiscale prior TODO: improve description
- ms_al_kap1: float
Multiscale prior TODO: improve description
- ms_al_kap2: float
Multiscale prior TODO: improve description
- ms_al_kap3: float
Multiscale prior TODO: improve description
- random_state
RandomState
Random state
- alpha_init
Examples
This how to use the class:
from pylira import LIRADeconvolver from pylira.data import point_source_gauss_psf data = point_source_gauss_psf() data["flux_init"] = data["flux"] deconvolve = LIRADeconvolver( alpha_init=np.ones(np.log2(data["counts"].shape[0]).astype(int)) ) result = deconvolve.run(data=data)
Methods Summary
run
(data)Run the algorithm
to_dict
()Convert deconvolver configuration to dict, with simple data types.
Methods Documentation
- run(data)[source]#
Run the algorithm
- Parameters:
- datadict of
ndarray
Data
- datadict of
- Returns:
- result
LIRADeconvolverResult
Result object.
- result