User Guide#
This is how to use Pylira:
from pylira import LIRADeconvolver
from pylira.data import point_source_gauss_psf
data = point_source_gauss_psf()
data["flux_init"] = data["flux"]
deconvolve = LIRADeconvolver(
alpha_init=np.ones(np.log2(data["counts"].shape[0]).astype(int))
)
result = deconvolve.run(data=data)
The data
object is a simple Pythin dict
containing the following quantities:
Quantity |
Definition |
---|---|
counts |
2D Numpy array containing the counts image |
psf |
2D Numpy array containing an image of the PSF |
exposure (optional) |
2D Numpy array containing the exposure image |
background (optional) |
2D Numpy array containing the background / baseline image |
From these quantities the predicted number of counts is computed like:
\[N_{Pred} = \mathrm{PSF} \circledast (\mathcal{E} \cdot (F + B))\]
Where \(\mathcal{E}\) is the exposure, \(F\) the deconvovled flux image, \(B\) the background and \(PSF\) the PSF image.